Trusted Execution Environment (TEE) on ESP32-C6

Enhanced Security for RISC-V SoCs

Sachin Billore & Laukik Hase

Introduction

TEE on ESP SoCs

ESP-TEE: Architecture

ESP-TEE: Internals

ESP-TEE: Use Cases

Speaker Intro

We are a part of the Security Team, and we work on building and maintaining the Security features supported in ESP-IDF and elsewhere.

Among other things, we work on support for cryptographic peripherals such as AES, RSA, Key Manager, flash encryption and secure boot.

Senior Software

Engineer

Laukik Hase

Embedded Software Engineer

Trusted Execution Environment (TEE)

Introduction: The Why and the What

Introduction: Why TEE?

A device's Security Model is derived from its Threat Model

Introduction: Why TEE?

A device's Security Model is derived from its Threat Model

- Threat Mitigation
 - of the system

 - No primary focus on invasive or non-invasive hardware attacks

• Reduce the attack surface by isolating security-sensitive system assets from the rest

Confidentiality of the data, Authenticity and Integrity of execution environment

Introduction - What is TEE

H/W-Defined, S/W-Implemented Isolation **Mechanism**

- Isolates security-sensitive hardware and software resources from the rest of the system, forming a parallel execution environment (TEE)
- TEE provides runtime security for these hardware and software resources, protecting them from the rest of the system
- Establishes a clear and well-defined interface between the two environments

Introduction - What is TEE

Real world example

Assets : Cryptographic key, Secure Application, Crypto HW

- Crypto key generate or provision
- Use in challenge response protocol
- Secure communication
- Enhance system security, implementation completely defined by system requirement.
- Requires for various certification and regulation.

TEE on the ESP32-C6 SoCs

TEE on ESP SoCs: ESP-TEE

	REE(U-Mode)	
	Applications	
	Other NS Apps	OTA Attestation
	ESP-IDF	
SW		
HW	Non-Secure Peripherals	RF
	Internal/External Memory	Wireless Digital Circuit
	CPU Subsystem	BootROM

Hardware Components (Immutable Root-of-Trust)

- ESP-TEE uses RISC-V ISA security features to achieve TEE/REE isolation
- Requires RISC-V M and U Privilege modes • M-Mode: Higher privilege mode host TEE firmware • U-Mode: Lower privilege mode host ESP-IDF and untrusted HW
- PMP/PMA to manage physical memory access Default M – Mode have full access and U-Mode none M-Mode configure PMP and PMA for selective memory access by U-Mode
- PMS: APM+TEE(hardware peripheral) Complement PMP/PMA to manage the physical memory
- Root Of Trust: ROM, eFuse, Crypto HW, Isolation HW (APM), Secure memory

Software Components (Updatable Root-of-Trust)

- TEE firmware include various internal components responsible for -
 - Secure configuration to achieve isolation
 - TEE initialization for secure services, interrupt and exception handling
- Includes Basic Secure Services, Crypto API and other secure HW abstraction which are used to implements use case based
 Secure Services (Attestation, OTA, Secure Storage etc.)
- Provide TEE interface API to REE to invoke secure service into TEE
- Uses RISC-V Environment call (ecall) to transition between TEE and REE

- PMP, PMA configuration and the APM peripheral (protected by PMP) are modifiable only in M-Mode.
- All configurations are locked and remain so until the next reset.

Resource Isolation

- Isolation between TEE and REE is established during TEE initialization.
- RISC-V primitives like PMP, PMA, and proprietary
- hardware peripheral APM are used for this
- isolation.

Internal Memory (SRAM)

• A memory region is reserved for the TEE starting from the beginning of the HP SRAM Permission management is done by PMP for all regions (TEE I/DRAM and REE I/DRAM) • TEE region is further divided into IRAM (text – RX) and DRAM (data – RW) sections using PMA

External Memory (Flash)

- Designated partitions in the external flash are reserved for the TEE – XIP execution, secure storage, and OTA data
- Access through cache protected using PMP
- Physical Access protected using APM

Peripherals

• AES, SHA, eFuse and Interrupt Controller are protected from REE access using APM

ESP-TEE: Internals

TEE Firmware and Secure Services

ESP-TEE: Secure Services

- Secure Service Call Table

 Indexed list of all secure services provided
 by TEE shared with the REE
- Service Dispatcher

Entry point to the TEE for any secure service call from REE

Parses the input arguments and passes
 execution control to the appropriate service

ESP-TEE: Secure Services

ESP-IDF Secure Services

- to the REE
- E.g., CryptoAPI services (AES/SHA), interrupt matrix and eFuse access

Custom Secure Services

- Optional secure services included as configurable TEE features
- Users can also define their own services as required
- E.g., Secure Storage, Secure OTA, and Attestation (included by default with ESP-TEE)

• Basic secure services included in the TEE firmware, providing routine functionalities

ESP-TEE: Interrupts

Interrupt Handling

- Separate vector tables for TEE (mtvec) and REE (utvec)
- Secure interrupt sources are protected from REE
- REE interrupts are delegated to REE when CPU is in REE (mideleg)
- Four interrupt handling scenarios
 - 1. REE interrupts in REE
 - 2. TEE interrupts in TEE
 - 3. TEE interrupts in REE
 - 4. REE interrupts in TEE

ESP-TEE: Boot Sequence

- and application images from the boot device.
- access, before switching to the REE in U-mode to run the application.

After a reset, the Boot ROM loads the stage II bootloader, which then loads the TEE

Control is passed to the TEE, which sets up memory, interrupts, and peripheral

Practical applications of TEE

ESP-TEE: Secure Storage

Persistent Storage for Sensitive Information

- Utilizes a dedicated external flash partition
- Encrypted with AES-256-GCM scheme with devicespecific key (eFuse)
- Data and encryption key are inaccessible to the REE

Key Management

slots)

- Supports storage of ECDSA secp256r1 key pairs (14)
- Interface to the REE for securely signing messages in the TEE using the above key material

ESP-TEE: OTA Updates

Securely manage TEE OTA updates

- Two TEE OTA app and one TEE OTA data partition entries are required
- Support for TEE app rollback
- Compatible with Secure Boot

ESP-TEE: Attestation

- Mechanism enabling a device to make claims about its identity and security status
- Useful for manufacturers and cloud service providers for device assurance and trust
- Entity Attestation Token (EAT) Cryptographically signed small data blob containing device claims, defined in JSON format

 Claims: Device ID, Software version, Hardware version, etc.

ESP-TEE: Attestation

- REE interface to securely generate and return an EAT from TEE
- EAT signed using an ECDSA secp256r1 keypair from the given TEE secure storage slot
- Supported Claims for all firmware images (Bootloader, active TEE and REE app)
 Project and ESP-IDF version
 Image Digest (SHA256)
 Public key corresponding to the signing private key (from secure storage)
 ECDSA signature of the EAT

ESP-TEE: How to Use It

Migration of Existing Projects

- Enable the TEE Kconfig option
- Partition Table needs to be updated
- TEE firmware generation handled by the build system
- Reference examples will be provided for all the current use cases

the build system for all the current use cases

Performance and Resource Impact

01 64 KB SRAM reserved for TEE (configurable)

O3 CPU cycles overhead: Service Call Entry: 778 (4.86 μs @ 160 MHz) Exit: 365 (2.28 μs @ 160 MHz)

O2 ~280KB external flash for TEE (use case dependent)

Future Work

01 ESP-TEE Beta version will release soon

03 Certification and Regulatory Compliance (E.g., PSA L2)

02 Support for other RISC-V SoCs in plans

04 Optimize performance and resource impact

Thanks for watching !